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NOMENCLATURE 

- C molecular velocity vector 

d distance between the plates 

f velocity distribution function 

f l ,  f2 components of two-stream Maxwellian 

- F external body force 

g, G functions defined by equation (45) 

1, (p)  integral defined by equation (3) 

? L ?  A 

I, J, k unit vectors in the x, y and z directions, respectively 

k thermal conductivity 

L 

m mass of molecule 

n 

nl ,  n2 number density functions 

plate temperature ratio parameter, equation (43) 

molecular number density and parameter in equation (3) 

t7 
P pressure 

g heat flux vector 

q2 

Q, w molecular property 

R gas constant 

unit normal vector to an area element 

* 

heat flux in y direction 
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TI, T2 temperature functions 

Tu, TLupper and lower plate temperatures 

u, v, w components of $ in the x, y and z directions, respsctively 

c V macrascapic velocity vector 

ai, ai constants, equations(51--53) 

P constant in equation (3), and parameter defined by equation (54) 

y 

E 

the ratio of specific heats 

azimuthal angle in binary collision 

p dynamic viscosity 

P mass density 

2 



SUMMARY 

Plane compressible Poiseuille flow with uniform pressure (Couette flow with stationary 
boundaries) is revisited where the Lees two-stream method with the Enskog equation of 
change is applied. Single particle velocity distribution functions are chosen, which pre- 
serve the essential physical features of this flow with arbitrary but uniform plate tempera- 
tures and gas pressure. Lower moments are shown to lead to expressions for the 
parameter functions, molecular number densities, and temperatures which are entirely in 
agreement with those obtained in the analysis of Lees for compressible plane Couette 
flow in the limit of low Mach number and vanishing mean gas velocity. Important simplifi- 
cations result, which are helpful in gaining insight into the power of kinetic theory in fluid 
mechanics. The temperature distribution, heat flux, as well as density, are completely de- 
termined for the whole range of Knudson numbers from free molecular flow to the contin- 
uum regime, when the pressure level is specified. 
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lNTR CTlON 

The Kinetic theory of gases is one of the most intriguing inventions in the theory of matter, 
with its foundations in statistical physics and applications in fundamental fluid physics. 
The main success of the kinetic theory is explaining the transport properties of gases set 
forth by its founders, Clasius, Maxwell (ref.1) and Boltzmann (refs. 2 and 3), and later by 
the more exact works of Chapman and Enskog (ref.4). There are as yet unanswered in- 
triguing questions, --for example, why the Navier--Stokes equations describe fluid mo- 
tions so satisfactorily. They can be obtained from the Boltzmann equations by the 
Chapman--Enskog theory by successive approximation with hh as the expansion param- 
eter and A acts on the five macroscopic variables, density p,  velocity )f, and temperature 

here h is the mean free path. Second order hydrodynamical equations derived by Bur- 
nett, however, lead to unrealistic physical phenomenon, --for example, negative absorp- 
tion coefficient in very high frequency sound waves. Turbulence, of course, remains an 
important unsolved problem in fluid mechanics. Attempts by several researchers have 
been made to develop a kinetic theory for turbulence. Despite their modest success, de- 
scription of turbulent flow must clearly be statistical and this makes kinetic theory an at- 
tractive guiding light. 

From the foregoing it may be clear that much insight into the physics of fluids, not only 
turbulence but, for example, the structure of shock waves can be obtained by carefully 
studying the works of masters and understanding their logic in deriving fundamental con- 
cepts and equations and expanding upon them. Even seemingly simple flow geometries 
may serve this purpose enormously. Obtaining exact solutions of Boltzmann equations is 
undoubtedly a formidable task. Lees (ref.5) developed a method utilizing a distribution 
function that is two-sided in character and contains parameter functions of space and time 
variables. The method is formulated in terms of Maxwellian functions which is a natural 
extension and generalization of Mott-Smith's (ref.6) approach for normal shock waves. 
Sufficient numbers of moments are taken to ensure a complete set of first order partial 
differential equations to solve for the functions. As pointed out by Lees (ref.5), this method 
amounts to satisfying the Maxwell--Boltzmann equation in a certain average sense rather 
than point by point. The distribution function is then a suitable weighting function and not 
an exact solution; therefore, the rigidity inherent in the polynomial of Chapman--Enskog 
or Grad's moment method (ref.7) is avoided. Kinetic theory is often obscured by mathe- 
matical formalism. In this paper we start with a brief discussion of the fundamental con- 
cepts and the two-stream method and proceed with the solution of the present problem in 
a most straightfoward way. 
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FUNDAMENTAL CONCEPTS 

Maxwell and Enskog Equations of Change 

The Boltzmann equation is fundamental to the kinetic theory. It represents conservation 
of molecules in the (,c, t-) phase space and accounts for all the mechanisms which can 
change the number of particles in (de, dc). Here, the molecular velocity is denoted by 
and is the position vector. The RHS of the Boltzmann equation pertains to gas phase 
binary collisions, where no correlation between particle velocities prior to collisions exists. 
This is generally .referred to as independent a priori probabilities or molecular chaos. A 
spherically symmetric intermolecular force field which is much stronger than all external 
forces is assumed. The duration of collisions is also much smaller than the time between 
collisions. In an integral form the Boltzmann equation leads to the Maxwell equation of 
change 

where, $ represents the partial derivative with reipect to time. Here f denotes the exter- 
nal force field and E is the azimuthal angle in the collision. The distribution functions f and 
f l  represent the binary (probe and colliding) particles before the collision and the primed 
functions after the collision. The speed of approach of binary particles is denoted by g, 
and b is an impact parameter (a hypothetical distance of closest approach if there was no 
interacting force.) The molecular property Q = Q( g )  only. In its more general form, when 
Q = Q(g, 5 ,  t), where t is the time, the Enskog equation of change is obtained. 

Averaging Over the Velocity Space 

Since the transport coefficients p ,  p, k (density, viscosity, and thermal conductivity, re- 
spectively) are given in terms of the averages over the velocity space involving the distri- 
bution function, the conservation laws can be obtained when Qs are the collisional 
invariants, mass m, linear momentum mg, and translational kinetic energy of particles 
1/2 mc2. The RHS of equation (2) is then identically zero. 

In evaluating the three-fold integrals over the velocity space, since the three components 
of the particle velocity are independent, the integrals can be separated into single-fold in- 
tegrals. The single-fold integrals can then be evaluated individually. We will present sum. 
maries of the integral results, employing the following definition 
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2 
ne-p4 d5 ' p > o  (3) 

Forn=O, 1: 

For n>l , a recursion formula may be written 

The integral equations of transfer, equations (1) and (2) possess an important property. 
They permit a large degree of flexibility in the choice of the distribution function. The dis- 
tribution function f can be expressed in terms of arbitrary functions of space and time 
that preserve the essential physical features of a problem and are, therefore, tailored to 
the particular case. There is no sequence of logic which enables one to find such func- 
tions; the tools seem to be accumulated experience and intuition. As mentioned earlier, 
Lees (ref. 5) develo ed a method utilizing a distribution function which is two-sided in 
character and contains parameter functions of space and time variables. The method is 

d in terms of Maxwellian functions, which is a natural extension and generaliza- 
tt-Smith's (ref. 7) approach for normal shock waves. Sufficient numbers of mo- 

ments are taken to obtain a complete set of first order differential equations to solve for 
the functions. As pointed out earlier, this procedure amounts to satisfying the Maxwell- 
Boltzmann integral equation and, therefore, the Enskog equation of change in an average 
sense rather than point by point. The search for higher order macroscopic equations in 
terms of the mean quantities is not persued, but surface boundary conditions can be in- 
corporated. Lees (ref. 5) applied this method to steady plane Couette flow for the limiting 

ach number and low temperature difference. Reasonable results were ob- 
tained for macroscopic quantities over the whole range of densities from free molecular 
flow to the Navier--Stokes. Later, Lees and Liu (ref. 8)  expanded this work to compressible 
plane Couette flow with arbitrary Mach number and uniform plate temperature. 

with a two-sided velocity distribution function, which appears sensible for the 
dary conditions and carry out the integrations over the corresponding veloc- 

ity space. The results are then shown to be entirely consistent with those obtained in the 
more general analysis of Lees and Liu (ref. 8 )  for compressible plane Couette flow in the 
limit of low Mach number. Important simplifications result which are helpful in gaining in- 
sight into the power of kinetic theory in fluid mechanics. The temperature distribution, heat 
flux, as well as density, are therefore completely determined for the whole range of Knud- 
son numbers from free molecular flow to the continuum regime when the pressure level 
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PLANE POISEUILLE AND COUETTE FLOWS 

Plain Poiseuille flow and plain Couette flow must be represented by different velocity dis- 
tribution functions in the kinetic theory. They are, however, physically identical when, in 
each flow respectively, uniform gas pressure and stationary boundaries are approached. 
We consider two stationary infinite parallel plates designated by the subscripts U (upper) 
and L (lower) which are held a distance d apart and are at temperatures Tu and TL , 
respectively. We will assume that the gas between the plates is monatomic and is at a 
uniform pressure p . Despite the non-zero molecular velocity g, no shear stresses exist, 
and determination of the heat flux and temperature distribution is of primary interest. 

We choose a two-sided Maxwellian particle velocity distribution function f and assume 
that the plates scatter molecules diffusely with complete thermal accommodation. 

-c2/2 RT, 
, v > 0, all u and w e "2 f, = 

(~I-CRT,) 3/2 

where nl, n2, TI, and T2 are parameter functions of y, and R is the gas constant. The 
boundary conditions for completely diffuse re-emission are 

T~=Tu at y= +1/2 d (9) 

The coordinate system denotes the components of velocity by u, v, and w in the x, y, and 

z (I, J, k unit vectors) directions, respectively. The plates are in the x, z plane. 
9 0 "  

The Heat Flux Vector 

The net flux of any molecular property W C ~ )  across an area element with unit normal vec- 

tor fi may be represented by 

c 

The heat flux vector between the plates is directed perpendicular to the plates, Le., 
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Here W (SI is the molecular kinetic energy 1 /2 mc2. Therefore, 

c 

Introducing the two-stream distribution function f and integrating over the velocity space, 

dudvdw 
-(u2+v2+w2)/2RT, - v (u2 + v2 + w2) e 

--M-w-w 

2 -  

w w w  

n2 ( u2 + v2 + w2) /2 RT, dudvdw (1 4) + 
--oo 0 -w 

( 2nRT2) 3/2 

Here, subscripts 1 and 2 to the square brackets refer to the integrals evaluated by equa- 
tions (3)--(5) containing the respective parameter functions 11 and T2 . Therefore, 

[ - nl T;I2 + n2Tz’2] 

e note that q2 is independent of y and therefore 

**.-nl T:I2 + n2T:I2 = const 

e now proceed with the definition of temperature as the mean molecular kinetic energy, 
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2 
<E> 3 -mRT = 2 2 

where 

T l  n1+ T2n2 
2n T =  

The gas density may be represented as the integral of the distribution function itself. 

n = ffdg 
,c 

1 
:.n = ?(n1 +n2) (26) 

The temperature T is, therefore, 
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oments may now be taken to establish additional equations for determination of the 
functions n l  , n2 , TI , and T2 . Since there is no net flux of mass in the y direction at any 'y', 

This is the first moment, or a statement of the conservation of mass. The second and forth 
moments related to the x and z components of velocity are not needed. 

The Enskog equation of change (eq.(2) ) for this problem, when no external forces are 
present is reduced ta 

where only the derivatives with respect to y are retained, and JQ denotes the collision in- 
tegral. 

For the third moment (Q = mv) , the conservation of momentum in the y direction, the col- 

lision integral vanishes. Furthermore, = o , since v is independent of y. Therefore, 
dY 

(32) 
2 v f2dg = const 

.. (34) 

h moment, Q = mc2/2 , the RHS of the equation of change is zero, since it is 

10 



also a collisional invariant, and - dQ is also zero. 
dY 

We have already evaluated this integral in determining the heat flux and shown that equa- 
tion (17) is satisfied. 

The sixth moment, Q = mvc2, is not a collisional invariant and evaluation of the collision 
dQ integral is required, although - again vanishes. We have 
dY 

where J denotes the collision integral. 
mvc2 

For molecules obeying an inverse fifth power intermolecular force law, the collision inte- 
grals in a full-range moment method are completely independent of the form of the distri- 
bution function. This advantage is preserved in the half-range moment method, at least 
for certain moments. Following Maxwell (ref. 1) and Jeans (ref. 9), Lees (ref. 5) considered 
collision dynamics between particles by means of vector geometry and showed that the 
first nine moments beyond the collisional invariants are, in fact, completely independent 
of the form of the distribution function. Lees then evaluated and corrected once and for 
all the numerical errors in the expressions given by Jeans . The result for Q = m v 3  is 
simply 

where p is the gas pressure and p the classical coefficient of viscosity. 
As pointed out earlier, q2 is a constant, therefore J 
in equation (36) is evaluated using the two-stream distribution function f l  and f2. 

is a constant. Again, the integral 
mvc2 
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"2 
[81~10+4121 ] + (2nRT2) 3/2 

.e.-[n,T, d + n2T2] = const 
dY 

iu 

Lees and Liu (ref. 8) expanded the analysis of L es (ref. 5) nd applied the two-stream 
method to plane compressible Couette flow with arbitrary plate temperatures. Mach and 
Reynolds numbers were defined in terms of the characteristic quantities nL and TL (den- 
sity and temperature at the lower plate surface respectively), U the relative plate velocity, 
and the separation distance d. 

e =  
PL 

Classical fluid viscosity coefficient 
of specific heats y, and a plate temperature ratio parameter L were also employed. 

evaluated at the lower plate temperature, the ratio 

It was shown that when number is small there is a split in the system of equa- 
tions containing the ther ic variables nil n2,T1, and T2 from the dynamical vari- 
ables u1 and u2 which were included in their analysis for moving plates. In the present 

ach and Reynolds numbers are vanishingly small. Their ratio Re/M, how- 
ever, is finite and is proportional to the ratio of the mean free path h to the characteristic 
length d. It characterizes the density level of the gas. We note that there are close simi- 
larities between the results of Lees and Liu (ref. 8) and the present analysis when M e< 1. 

s mentioned earlier, Plain Poiseuille flow and plain Couette flow must be represented by 
different velocity distribution functions in kinetic theory. They are, however, physically 
identical when in each flow respectively, uniform gas pressure and stationary boundaries 
are approached. The pres t analysis must, therefore, be in agreement with the results 
of Lees and Liu (ref. 8) for << 1. This, in fact, is the case. We note that by substituting 
equation (30) into equation (1 7), one obtains the following equation. 
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n lA (T2-T l )  = const (44) 

Inspection of reference 8 reveals, that equations (22a), (22c), and (22d) of reference (8) 
are identical to equations (30), (34), and (44) of the present work, respectively, except for 
the dimensionality difference. A new function g(y) may now be conveniently defined as 

As shown in reference 8, the present equations (30), (34), (44), and (45) can be easily 
manipulated to result in relations for TI ,T2, nl, and n2 in terms of g(y) and constants ai . 
For the present problem al =O. 

Once g(y) is determined, T1 ,T2, "1, and n2 are also completely determined. In order to ob- 
tain g(y) explicitly, the expressions for T1 ,T2, nl, and n2 are substituted in equation(40) 
and the integration is carried out, which results in an additional constant a4. The boundary 
conditions (eqs. (9) and (IO) ), as well as equations (46)--(49), are fully applicable for de- 
termination of the constants. The details of the algebra are rather lengthy and will not be 
presented here. We will, for completeness, however, include the expressions for the q 
and g(x) as presented in reference 8. For consistency with reference 8, q can be replaced 
by ai, and g(x) by G(x). This implies that the quantities nl , n2,T1, and T2 will be accord- 
ingly dimensionless (normalized by nL and TL, respectively). 



01 3 = 2 - a 2  (52) 

(53) 
= 1 - 2 (1 + p) x (a3 /a2)  + (ug/a2) 2 

"4 
where 

p = (8/15),@&Re/M (54) 

The results of both analysis are entirely consistent with each other. As shown by Lees 
and Liu (ref. 8) ,  the heat flux and temperature distribution are, therefore, fully determined 
for the whole range of Knudson numbers from free molecular flow to the continuum re- 
gime, when the pressure level is specified. Furthermore, when u1 = u2 = 0 in Lees and Liu 
(ref. 8), the distribution functions lead to identical expressions. The present analysis, 
therefore, may be viewed as an alternative to the more general analysis of Lees and Liu 
(ref. 8) in which identical results are arrived at independently. 
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C O ~ C L ~ D I ~ G  REMARKS 

Plane compressible Poiseuille flow with uniform pressure (which is, in fact, Couette flow 
with stationary boundaries) was chosen to discuss the mathematical and physical fea- 
tures of an approximate technique for the solution of the Boltzmann equation. Lees two- 
stream method, a clever invention in kinetic theory, shows that in a rigorous field such as 
statistical physics, fundamental and physically realistic treatments can be made with rel- 
ative ease. The Enskog equation of change, which is more general than the Maxwell in- 
tegral equation, was shown to lead to results that completely describe the heat transfer 
process. A simple form of the two-stream single particle velocity distribution function 
which preserves the essential physical features of Poiseuille flow with arbitrary but uni- 
form plate temperatures and gas pressure was chosen. Important simplifications result 
which are helpful in gaining insight into the power of kinetic theory in fluid mechanics. Low- 
er moments are shown to lead to equations for four parameter functions, molecular num- 
ber densities, and temperatures employed in the distribution function, which are entirely 
consistent with those obtained by Lees and Liu (ref. 8) in the limit of low Mach number and 
vanishing mean gas velocity. The temperature distribution, heat flux, as well as density, 
are therefore completely determined for the whole range of Knudson numbers from free 
molecular flow to the continuum regime, when the pressure level is specified. 
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